
09/21/14
11:46:13 1network-surveillance.txt

[I didn’t have presentation slides. This is a from-memory
transcription of my talk.]

Hello, my name is Steve, I’m the quartermaster of the Massachusetts
Pirate Party, and this is the Cryptoparty segment of Software Freedom
day. Cryptoparties are a way to introduce people to encryption and
privacy-enhancing technologies. Kendra will demonstrate Jitsi and Noe
will demonstrate Mailvelope and PGP. I’m here to give an
introduction, and to set some context for why these things are
important.

In the next couple of minutes, I’m going to demonstrate of packet
sniffing. Packet sniffing sounds like something you did at the back
of the bus in high school, but it’s really a form of traffic capture
and network surveillance. I’m going to use tshark -- a text-only
version of wireshark -- to capture traffic from my web browser, and
dump it to a file. Then, we’ll poke around to see what we can find.

I like wireshark because it understands protocols. Protocols are
basically rules of engagement, and they’ve been around much longer
than computers. For example, green means go and red means stop.
That’s a protocol. Your cat walks over to her food dish and starts
yowling, and you feed the cat. That’s a protocol. For us, protocols
are the rules for how computers talk to each other over the network.

Here’s an example of the SMTP protocol, which is used to deliver
email.

 220 buffy.mayfirst.org ESMTP Postfix (Debian/GNU)
 HELO buffy.mayfirst.org
 250 buffy.mayfirst.org
 MAIL FROM: <steve@....>
 250 2.1.0 Ok
 RCPT TO: <steve@....>
 250 2.1.5 Ok
 DATA
 354 End data with <CR><LF>.<CR><LF>
 From: info@...
 To: steve@...
 Subject: im in yr mailz

 kthxbye
 .
 250 2.0.0 Ok: queued as 90913FB13
 QUIT
 221 2.0.0 Bye
 Connection closed by foreign host.

Here, I’ve just sent myself an email message. That’s exactly how your
mail program works.

Another common protocol, and the one we’re going to focus on, is HTTP.
Here’s how your web browser asks for a web page:

 $ telnet fsf.org 80
 Trying 208.118.235.131...
 Connected to fsf.org.
 Escape character is ’^]’.
 GET / HTTP/1.0
 Host: fsf.org

 HTTP/1.0 301 Moved Permanently
 Server: nginx/1.1.19

09/21/14
11:46:13 2network-surveillance.txt

 Date: Sun, 21 Sep 2014 15:01:16 GMT
 Content-Type: text/html
 Content-Length: 185
 Location: http://www.fsf.org/
 X-Cache: MISS from www.fsforg
 X-Cache-Lookup: MISS from www.fsforg:80
 Via: 1.0 www.fsforg (squid/3.1.19)
 Connection: close

 <html>
 <head><title>301 Moved Permanently</title></head>
 <body bgcolor="white">
 <center><h1>301 Moved Permanently</h1></center>
 <hr><center>nginx/1.1.19</center>
 </body>
 </html>

In this case, we got a redirect from fsf.org, to www.fsf.org.

This is what network traffic looks like. In these examples, I’m
directly generating the network traffic. Now, I’ll use tshark to
capture network traffic generated by another program.

Let’s start tshark, and capture some packets

 sudo tshark -O http -i wlan0 -R "http.request || http.response" | tee pcap.txt

This is going to capture all of the HTTP request and response packets
going through my laptop’s wireless card. This won’t capture page
content (because it’s big and messy to wade through) -- it’s just
metadata. But of course, I could capture the content if I wanted to.

Before doing this, I need to make a few changes to my web browser.
Normally, I try to keep my browser locked down; I’ll undo that for
this demonstration, so that we have more interesting things to look
at.

The first thing I’ll do is disable a couple of extensions.
Specifically, I’m going to disable NoScript (which selectively blocks
javascript); I’m going to disable RefControl (which blocks http
referer headers), and I’m going to disable HTTPS Everywhere. HTTPS
Everywhere tries to force traffic over HTTPS, but our packet capture
won’t be very interesting if the traffic is encrypted. Finally, I’m
going to go into my browser’s cookie preferences and change "Accept
Third-Party cookies" from "Never" to "Always".

Now, let’s ask for the front page of the washington post.

 http://www.washingtonpost.com/

Now that Washington Post’s front page has finished loading, let’s look
at our packet capture:

Here’s the first request

 Frame 45: 379 bytes on wire (3032 bits), 379 bytes captured (3032 bits) on interface 0
 Ethernet II, Src: HonHaiPr_ec:9f:9e (00:26:5e:ec:9f:9e), Dst: 34:4d:f7:38:84:c3 (34:4d:
f7:38:84:c3)
 Internet Protocol Version 4, Src: 192.168.43.52 (192.168.43.52), Dst: 192.33.31.56 (192
.33.31.56)
 Transmission Control Protocol, Src Port: 42382 (42382), Dst Port: http (80), Seq: 1, Ac
k: 1, Len: 313
 Hypertext Transfer Protocol

09/21/14
11:46:13 3network-surveillance.txt

 GET / HTTP/1.1\r\n
 [Expert Info (Chat/Sequence): GET / HTTP/1.1\r\n]
 [Message: GET / HTTP/1.1\r\n]
 [Severity level: Chat]
 [Group: Sequence]
 Request Method: GET
 Request URI: /
 Request Version: HTTP/1.1
 Host: www.washingtonpost.com\r\n
 User-Agent: Mozilla/5.0 (X11; Linux i686; rv:28.0) Gecko/20100101 Firefox/28.0 Icew
easel/28.0\r\n
 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\r\n
 Accept-Language: en-US,en;q=0.5\r\n
 Accept-Encoding: gzip, deflate\r\n
 DNT: 1\r\n
 Connection: keep-alive\r\n
 \r\n
 [Full request URI: http://www.washingtonpost.com/]

What’s do we see here? First, we see the source and destination MAC
addresses. These are the Layer II hardware network addresses.

 Ethernet II, Src: HonHaiPr_ec:9f:9e (00:26:5e:ec:9f:9e), Dst: 34:4d:f7:38:84:c3 (34:4d:
f7:38:84:c3)

We also see the source and destination IP addresses

 Internet Protocol Version 4, Src: 192.168.43.52 (192.168.43.52), Dst: 192.33.31.56 (192
.33.31.56)

and the source and destination port numbers

 Transmission Control Protocol, Src Port: 42382 (42382), Dst Port: http (80), Seq: 1, Ac
k: 1, Len: 313

We saw a lot of stuff go whizzing by on the screen. Let’s look at the
different Host: headers, to get a sense of what our browser was doing.
Here are the first couple of matching lines

 Host: www.washingtonpost.com\r\n
 Host: css.washingtonpost.com\r\n
 Host: wp-eng-static.washingtonpost.com\r\n
 Host: www.washingtonpost.com\r\n
 Host: media.washingtonpost.com\r\n
 Host: img.washingtonpost.com\r\n
 Host: img.washingtonpost.com\r\n
 Host: img.washingtonpost.com\r\n
 Host: img.washingtonpost.com\r\n
 Host: img.washingtonpost.com\r\n
 Host: img.washingtonpost.com\r\n
 Host: www.washingtonpost.com\r\n
 Host: www.washingtonpost.com\r\n
 Host: www.washingtonpost.com\r\n
 Host: www.washingtonpost.com\r\n
 Host: js.washingtonpost.com\r\n
 Host: js.washingtonpost.com\r\n
 Host: js.washingtonpost.com\r\n

Okay, there’s www.washingtonpost.com, css.washingtpost.com, and

09/21/14
11:46:13 4network-surveillance.txt

js.washingtonpost.com; those seem related to our initial request.
What other Host: headers can we find?

 $ grep Host: pcap.txt | sort -u
 Host: a.tile.openstreetmap.org\r\n
 Host: aax.amazon-adsystem.com\r\n
 Host: ad.360yield.com\r\n
 Host: ad.doubleclick.net\r\n
 Host: adadvisor.net\r\n
 Host: admaym.com\r\n
 Host: ads.adsonar.com\r\n
 Host: ads.yahoo.com\r\n
 Host: ak1.abmr.net\r\n
 Host: api.bizographics.com\r\n
 Host: apiservices.krxd.net\r\n
 Host: b.scorecardresearch.com\r\n
 Host: b.tile.openstreetmap.org\r\n
 Host: beacon-3.newrelic.com\r\n
 Host: beacon.krxd.net\r\n
 Host: bh.contextweb.com\r\n
 Host: bs.serving-sys.com\r\n
 Host: c.amazon-adsystem.com\r\n
 Host: c.tile.openstreetmap.org\r\n
 Host: cdn.doubleverify.com\r\n
 Host: cdn.krxd.net\r\n
 Host: cdn.tacoda.at.atwola.com\r\n
 Host: cdn.tt.omtrdc.net\r\n
 Host: ce.lijit.com\r\n
 Host: cm.g.doubleclick.net\r\n
 Host: cotads.adscale.de\r\n
 Host: cs.specificclick.net\r\n
 Host: css.washingtonpost.com\r\n
 Host: d.agkn.com\r\n
 Host: d1ros97qkrwjf5.cloudfront.net\r\n
 Host: delivery.swid.switchads.com\r\n
 Host: dis.criteo.com\r\n
 Host: dizqy8916g7hx.cloudfront.net\r\n
 Host: ds.serving-sys.com\r\n
 Host: dt.adsafeprotected.com\r\n
 Host: e.nexac.com\r\n
 Host: event.trove.com\r\n
 Host: ib.adnxs.com\r\n
 Host: ib.mookie1.com\r\n
 Host: id.washingtonpost.com\r\n
 Host: idsync.rlcdn.com\r\n
 Host: idvisitor.socialreader.com\r\n
 Host: ih.adscale.de\r\n
 Host: image2.pubmatic.com\r\n
 Host: img.washingtonpost.com\r\n
 Host: js.adsonar.com\r\n
 Host: js.moatads.com\r\n
 Host: js.revsci.net\r\n
 Host: js.washingtonpost.com\r\n
 Host: load.s3.amazonaws.com\r\n
 Host: loadm.exelator.com\r\n
 Host: media.washingtonpost.com\r\n
 Host: meraxes-cdn.polarmobile.com\r\n
 Host: metrics.washingtonpost.com\r\n
 Host: moneta.trove.com\r\n
 Host: o.aolcdn.com\r\n
 Host: openstreetmaps.org\r\n
 Host: p.acxiom-online.com\r\n
 Host: partner.googleadservices.com\r\n
 Host: ping.chartbeat.net\r\n

09/21/14
11:46:13 5network-surveillance.txt

 Host: piwik.openstreetmap.org\r\n
 Host: pix.btrll.com\r\n
 Host: pixel.adsafeprotected.com\r\n
 Host: pixel.mathtag.com\r\n
 Host: pixel.rubiconproject.com\r\n
 Host: plugin.mediavoice.com\r\n
 Host: pubads.g.doubleclick.net\r\n
 Host: pwapi.washingtonpost.com\r\n
 Host: r.casalemedia.com\r\n
 Host: r.nexac.com\r\n
 Host: rtax.criteo.com\r\n
 Host: rtb-csync.smartadserver.com\r\n
 Host: rumds.wpdigital.net\r\n
 Host: s.ixiaa.com\r\n
 Host: s.kau.li\r\n
 Host: s.troveread.com\r\n
 Host: s1.2mdn.net\r\n
 Host: search.spotxchange.com\r\n
 Host: static.adsafeprotected.com\r\n
 Host: static.chartbeat.com\r\n
 Host: stats.opbandit.com\r\n
 Host: su.addthis.com\r\n
 Host: sync.adap.tv\r\n
 Host: sync.go.sonobi.com\r\n
 Host: sync.mathtag.com\r\n
 Host: sync.search.spotxchange.com\r\n
 Host: sync.tidaltv.com\r\n
 Host: sync.zenoviaexchange.com\r\n
 Host: sync2.dist.us-east.zenoviaexchange.com\r\n
 Host: t.mookie1.com\r\n
 Host: tags.bluekai.com\r\n
 Host: tpc.googlesyndication.com\r\n
 Host: tps10225.doubleverify.com\r\n
 Host: tps30.doubleverify.com\r\n
 Host: ums.adtechus.com\r\n
 Host: us-u.openx.net\r\n
 Host: valyria-cdn.polarmobile.com\r\n
 Host: washpost.bloomberg.com\r\n
 Host: widgets.outbrain.com\r\n
 Host: wp-eng-static.washingtonpost.com\r\n
 Host: wpni.tt.omtrdc.net\r\n
 Host: www.adadvisor.net\r\n
 Host: www.burstnet.com\r\n
 Host: www.openstreetmap.org\r\n
 Host: www.washingtonpost.com\r\n
 Host: y.one.impact-ad.jp\r\n

Wow, that’s a lot. Many of them are advertisers, or what I refer to
as the "corporate surveillance industry". Some of these websites are
going to plant cookies with unique identifiers, allowing them to track
you from site to site. Of course, if someone with a big data center
in Utah captures these identifiers, they can also use them to track
you from site to site.

Cookies can be interesting to look at. Let’s examine a few

 Host: pixel.mathtag.com\r\n
 Referer: http://www.washingtonpost.com/\r\n
 DNT: 1\r\n
 [truncated] Set-Cookie: mt_mop=10025:1410015465|41:1410015465|10042:1410015465|37:141
0015465|35:1410015465|10008:1410015465|39:1410015465|10031:1410015465|10018:1410015465|3:
1410015465|5:1410015465|4:1410015465|10013:1410015465|9:141001546

09/21/14
11:46:13 6network-surveillance.txt

This cookie is from a mathtag tracking pixel. I’m sure these numbers
mean something to someone. So much for my Do Not Track headers.

I think the most interesting cookie is one that washingtonpost.com
sets directly:

 Cookie: de=; client_region=0; X-WP-Split=A; devicetype=0; rpld1=0:myvzw.com|20:usa|21
:ma|22:boston|23:42.358002|24:-71.056999|\r\n

This is a geocoding cookie. I’m betting that myvzw.com comes from
Verizon wireless (thanks to the nice fellow who’s letting me use his
phone as a wireless hotspot). We also see USA, MA, and Boston. The
last two numbers look like latitude and longitude. Let’s plug them
into openstreetmap and see where they are.

 http://www.openstreetmap.org/search?query=42.358002%2C-71.056999#map=17/42.35800/-71.05
700

The location in downtown Boston, just off Congress street.
Presumably, this is where Verizon Wireless’s backhaul terminates.

Last night, I tried this exercise at home. The geolocation was about
six blocks from my house.

What should you take away from this? Even without looking at content,
there’s a lot of information in our packet capture. If you can
collect network traffic wholesale, then it’s not hard to store,
catalog, and query. If you’re traffic is encrypted, it can still be
captured and stored. But it will take a significant amount of work to
get any information out.

